ISSN 1600-5368

Nélida Fernández-González,^a Cristina González-Silgo,^b Javier González-Platas,^b* Pedro Gili^a and Pedro Martín-Zarza^a

^aDpto. Química Inorgánica, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez s/n, E-38204, La Laguna, Tenerife, Spain, and ^bDpto. Física Fundamental II. Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez s/n, E-38204, La Laguna, Tenerife, Spain

Correspondence e-mail: jplatas@ull.es

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.006 Å R factor = 0.029 wR factor = 0.075 Data-to-parameter ratio = 10.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2001 International Union of Crystallography Printed in Great Britain - all rights reserved

cis-Aquabis(2,2'-bipyridine-N,N')[dichrom $ato(2)-O^{1}nickel(II)$

The molecular structure of the title compound, [Ni- $(C_{10}H_8N_2)_2(H_2O)$ {Cr₂O₇}], contains an Ni^{II} atom with a distorted cis-octahedral coordination formed by two chelating bipyridine (bipy) ligands [mean Ni $-N_{bipy} = 2.068$ (3) Å], one water molecule [Ni-O = 2.086 (3) Å] and an O atom of the dichromate anion [Ni-O = 2.083 (2) Å]. One of the water H atoms is involved in the intramolecular hydrogen bond with the terminal O atom of the dichromate ligand $[O \cdots O]$ 2.743 (5) Å], whereas its second H atom participates in the intermolecular hydrogen bonding $[O \cdots O 2.688 (4) \text{ Å}]$; the latter is responsible for the formation of the infinite chains stretching along the polar c axis of the crystal.

Comment

The industrial importance of chromium(VI) compounds, together with their toxic and genotoxic character, are the reasons for considerable attention attracted by the studies of the metal complexes containing compounds of chromium(VI) as ligands (Dave & Czernuszewiccz, 1994). In particular, a coordination model based on the study of chromates and dichromate complexes of transition metals with organic ligands, has been proposed to explain the decrease in the mutagenic activities of the chromium(VI) compounds (Gili & Lorenzo-Luis, 1999).

Many transition metal complexes containing $[Cr_2O_7]^{2-}$ and organic bases as ligands have been structurally characterized (Uggla et al., 1970; Jameson et al., 1986; Munno et al., 1998; Pan et al., 1998) because of their special properties in such areas as analytical chemistry, catalysis and magneto-chemistry.

In our current research on dichromate complexes of transition metals with magnetic properties, we have prepared a new nickel(II) dichromate with bipy as chelating ligand (Fig. 1). The asymmetric unit of the title complex, (I), involves an Ni^{II} atom with a distorted octahedral coordination environment provided by a pair of chelating bipy ligands, water molecule and O atom of the Cr₂O₇ group, oxygen ligands occupying cis positions in the octahedron. The Ni-N_{bipy} bond

Received 4 December 2000 Accepted 15 December 2000 Online 22 December 2000

metal-organic papers

Figure 1

A perspective view of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

distances [mean value 2.068 (3) Å] are slightly shorter than the Ni–O_{water} bond length [2.086 (3) Å]. The N–Ni–N bite angles [79.04 (12) and 79.21 (12)°] agree well with those reported previously for other nickel(II) complexes containing bipy (Wada *et al.*, 1976; Cortés *et al.*, 1994; Román *et al.*, 1995; Hernández-Molina *et al.*, 1999). As expected, both bipy ligands are nearly planar [the largest deviation from their mean planes is 0.069 (4) Å for C10], the certain degree of twisting of the pyridyl rings in the bipy ligands relative to each other [in the title compound, the twist angles are 5.1 (2) and 2.1 (2)° for N1/N2/C1–C10 and N3/N4/C11–C20, respectively] is perfectly normal; angles up to 18° have been observed previously (Cano *et al.*, 1994). The mean planes of the two bipy molecules are inclined by 71.67 (10)° with respect to one another.

Each Cr atom in (I) exhibits a slightly distorted tetahedral geometry. The two tetahedral CrO_4 groups share one O atom (O4) thus forming a dichromate anion in an almost eclipsed conformation. The Cr-O-Cr bridging angle is 129.2 (2)°, a value which is in the range of previously reported dichromate-containing compounds (Mestres *et al.*, 1993; Martín-Zarza *et al.*, 1995). The bridging Cr-O bonds are 1.744 (3) and 1.812 (3) Å for Cr1-O4 and Cr2-O4, respectively. They are longer than the terminal Cr-O bonds, the maximum and minimum bond lengths for the latter being 1.640 (3) (Cr1-O3) and 1.580 (3) Å (Cr1-O2). The O-Cr-O bond angle range is 104.9 (2)–111.8 (2)° and Cr-O-Ni bridging angle [140.73 (14)°] is in accordance with the analogous parameters in similar compounds (Oshio *et al.*, 1997; Ki-Young *et al.*, 1999).

The water molecule coordinated to the Ni^{II} atom forms one intramolecular hydrogen bond with the terminal O atom of the dichromate ligand $[O8\cdots O5\ 2.743\ (5)\ \text{Å}]$, as well as one intermolecular hydrogen bond $[O8\cdots O3^{i}\ 2.688\ (4)\ \text{Å};$ symmetry code: (i) $\frac{1}{2} - x$, -y, $\frac{1}{2} + z$] (Fig. 2). The latter hydrogen bond links the molecules of the complex into the infinite chains stretching along the *c* axis of the crystal.

Experimental

Prismatic brown single crystals of the title compound were grown by a slow diffusion. Into one arm of the H-double-tube glass vessel were added $K_2Cr_2O_7$ (10 ml, 0.1 *M* water solution) and NiCl₂ 6 H₂O (10 ml, 0.1 *M* water solution). Into the other arm 2,2'-bipy was added (20 ml, 0.1 *M* in acetone). Both arms were covered by acetone and protected by parafilm to avoid acetone evaporation. The vessel was allowed to stand at room temperature. A few crystals of the compound appeared after one month. The crystals were selected and washed with some drops of cold water–ethanol (1:1) solution.

Crystal data

$[\text{NICr}_2\text{O}_7(\text{C}_{10}\text{H}_8\text{N}_2)_2(\text{H}_2\text{O})]$	Mo K α radiation
$M_r = 605.07$	Cell parameters from 25
Orthorhombic, Fdd2	reflections
a = 33.958(5) Å	$\theta = 12.0 - 18.2^{\circ}$
b = 22.880 (3) Å	$\mu = 1.81 \text{ mm}^{-1}$
c = 11.7350(10) Å	T = 293 (2) K
$V = 9118 (2) Å^3$	Prism, brown
Z = 16	$0.45 \times 0.23 \times 0.15 \text{ mm}$
$D_x = 1.763 \text{ Mg m}^{-3}$	
Data collection	
Enraf-Nonius CAD-4 diffract-	2927 reflections with $I > 2\sigma(I)$
ometer	$\theta_{\rm max} = 30.0^{\circ}$
() 600PG	$h = 0 \rightarrow 47$
wscalls	$n = 0 \rightarrow 4/$

Absorption correction: ψ scan (North *et al.*, 1968) $T_{\min} = 0.613, T_{\max} = 0.762$ 3459 measured reflections 3459 independent reflections 2927 reflections with $I > 2\sigma(I)$ $\theta_{\max} = 30.0^{\circ}$ $h = 0 \rightarrow 47$ $k = 0 \rightarrow 32$ $l = -16 \rightarrow 0$ 3 standard reflections frequency: 120 min intensity decay: none Refinement

$w = 1/[\sigma^2(F_o^2) + (0.0449P)^2]$
+ 0.7783P]
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} = 0.001$
$\Delta \rho_{\rm max} = 0.47 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.28 \text{ e } \text{\AA}^{-3}$
Absolute structure: (Flack, 1983),
no Friedel pairs
Flack parameter $= 0.07 (2)$

Table 1

Selected geometric parameters (Å, °).

Ni1-O1	2.083 (2)	Cr1-O2	1.580 (3)
Ni1-O8	2.086 (3)	Cr1-O3	1.640 (3)
Ni1-N1	2.054 (3)	Cr1-O4	1.744 (3)
Ni1-N2	2.081 (3)	Cr2-O4	1.812 (3)
Ni1-N3	2.057 (3)	Cr2-O5	1.596 (4)
Ni1-N4	2.083 (3)	Cr2-O6	1.589 (4)
Cr1-O1	1.629 (3)	Cr2-07	1.601 (4)
O1-Ni1-N1	169.26 (10)	Ni1-O1-Cr1	140.73 (14)
O8-Ni1-N4	170.57 (12)	Cr1-O4-Cr2	129.2 (2)
N2-Ni1-N3	172.58 (11)		

Table 2

Hydrogen-bonding geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{matrix} 08-H81\cdots 05\\ 08-H82\cdots 03^i \end{matrix}$	0.93	1.82	2.743 (5)	175
	0.77	1.93	2.688 (4)	165

Symmetry codes: (i) $\frac{1}{2} - x$, -y, $\frac{1}{2} + z$.

All H atoms have been generated at idealized geometries, except for those belonging to the water molecule which were located in difference syntheses, and refined isotropically using a riding model with displacement parameters set at $1.2U_{\rm eq}$. The residual electron-density maximum is 0.47 Å from the Ni1 atom.

Data collection: *CAD-4 EXPRESS* (Enraf–Nonius, 1994); cell refinement: *CAD-4 EXPRESS*; data reduction: *HELENA* (Spek, 1997); program(s) used to solve structure: *SIR*97 (Altomare *et al.*,

1999); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *PLATON* (Spek, 1990); software used to prepare material for publication: *PLATON*.

CGS, JGP and PMZ would like to thank the Consejería de Educación, Cultura y Deportes for financial support (No. 135/2000).

References

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Cano, J., De Munno, G., Sanz, J., Ruiz, R., Lloret, F., Faus, J. & Julve, M. (1994). J. Chem. Soc. Dalton Trans. pp. 3465–3471.
- Cortés, R., Urtiaga, K., Lezama, L., Pizarro, J. L., Goñi, A., Arriortua, M. I. & Rojo, T. (1994). *Inorg. Chem.* 33, 4009–4015.
- Dave, B. C. & Czernuszewiccz, R. S. (1994). Inorg. Chem. 33, 847-848.
- Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Gili, P. & Lorenzo-Luis, P. A. (1999). Coord. Chem. Rev. pp. 193–195, 747–768. Hernández-Molina, M., González-Platas, J., Ruiz-Pérez, C., Lloret, F. & Julve,
- M. (1999). Inorg. Chim. Acta, 284, 258–265.
 Jameson, G. B. Seferiadis, N. & Oswald, H. R. (1986). Acta Cryst. C42, 984– 987.
- Ki-Young, C., Il-Hwan, S. & Dong Won, K. (1999). Inorg. Chim. Acta, 293, 100–105.
- Martín-Zarza, P., Gili, P., Rodríguez-Romero, F. V. & Ruiz-Pérez, C. (1995). Polyhedron, 14, 2907–2911.
- Mestres, J., Durán, M., Martín-Zarza, P., Medina de la Rosa, E. & Gili, P. (1993). *Inorg. Chem.* 32, 4708–4710.
- Munno, G. D., Poerio, T., Julve, M., Lloret, F., Faus, J. & Caneschi, A. (1998). J. Chem. Soc. Dalton Trans. pp. 1679–1685.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Oshio, H., Okamoto, H., Kikuchi, T. & Ito, T. (1997). *Inorg. Chem.* **36**, 3201–3203.
- Pan, L., Zheng, N., Zhou, X., Wu, Y., Wu, Q. & Jin, X. (1998). Acta Cryst. C54, 1802–1804.
- Román, P., Luque, A., Guzmán-Miralles, C. & Beitia, J. I. (1995). Polyhedron, 14, 2863–2869.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (1990). Acta Cryst. A46, C-34.
- Spek, A. L. (1997). HELENA. Utrecht University, The Netherlands.
- Uggla, R., Visti, J., Klinga, M. & Násakkala, M. (1970). Suom. Kem. Ser. B, 43, 488–490.
- Wada, A., Sakabe, N. & Tanaka, J. (1976). Acta Cryst. B32, 1121-1125.